English | 简体中文 | 繁體中文 | 한국어 | 日本語
Friday, 24 June 2011, 08:04 HKT/SGT
Share:
    

Source: RIKEN
RIKEN: Mechanism for Stress-induced Epigenetic Inheritance Uncovered in New Study

TOKYO, June 24, 2011 - (ACN Newswire) - Researchers at RIKEN have uncovered a mechanism by which the effects of stress in the fly species Drosophila are inherited epigenetically over many generations through changes to the structure of chromatin, the material that makes up the cell nucleus. Published in the journal Cell, the results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in our understanding of non-Mendelian inheritance.

Recent years have seen growing interest in the phenomenon of epigenetic inheritance: the idea that our genome, through epigenetic tags and other structural modifications, transmits more information than the sequence of letters encoded in its DNA base pairs alone. Stresses of various kinds have been shown to induce such epigenetic change, yet the underlying mechanisms involved remain unknown.

To clarify these mechanisms, the researchers investigated the activity of activation transcription factor-2 (ATF-2), a member of a family of transcription factors which regulate gene expression in response to changes in the cellular environment. Earlier research had suggested that in the absence of stress, ATF-2 plays a role in silencing certain genes through the formation of heterochromatin, a tightly-packed variety of chromatin whose state is epigenetically heritable. When the stress is turned on, ATF-2 changes its function and induces gene expression.

Studying mutations to the ATF-2 gene in Drosophila (dATF-2), the researchers observed a disruption to the heterochromatin structure and reduced methylation of histone proteins, the main component of chromatin. Further analysis revealed that heat shock and osmotic stress during early embryogenesis results in phosphorylation of dATF-2 and triggers its release from the heterochromatin.

Most interestingly, the researchers discovered that the disruption to heterochromatin caused by the release of dATF-2 was transmitted to the next generation of cells, without any change to their DNA sequences. In the case of heat shock, sustained stress over multiple generations resulted in the altered chromatin state being inherited by subsequent generations as well. The findings thus provide the first example of multigenerational transmission of stress-induced epigenetic change, highlighting the role played by ATF-2 and opening promising new avenues for further study.

Press document (with Fingures):
http://www.riken.jp/engn/r-world/info/release/press/2011/110624/index.html


Contact:

Shunsuke Ishii
Molecular Genetics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)29-836-9031
Fax: +81-(0)29-836-9030

Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
Fax: +81-(0)48-463-3687
Email: koho@riken.jp

Distributed for RIKEN by ResearchSEA.

Topic: Press release summary
Source: RIKEN

Sectors: Science & Research, BioTech
https://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 

RIKEN Related News
Tuesday, 10 October 2023, 16:29 JST
Fujitsu and RIKEN develop AI drug discovery technology utilizing generative AI to predict structural changes in proteins
Dec 17, 2013 15:20 HKT/SGT
A Novel Insight into Cardiac Function: Development of a New Model of Spontaneous Oscillatory Contraction
Feb 27, 2012 19:30 HKT/SGT
The Asian Research Network: a Collaboration to Boost Science
Sept 22, 2011 20:31 HKT/SGT
RIKEN: New Metal Hydride Clusters Provide Insights into Hydrogen Storage
Sept 22, 2011 19:03 HKT/SGT
Preserving Goat Semen and Other News from the Journal of Tropical Agricultural Science (JTAS)
More news >>
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575