English | 简体中文 | 繁體中文 | 한국어 | 日本語
Wednesday, 5 December 2012, 22:45 HKT/SGT
Share:
    

Source: National Institute for Materials Science (NIMS)
Hybrid Scaffold More Than Skin Deep

TSUKUBA, Japan, Dec 5, 2012 - (ACN Newswire) - Open skin wounds need to be repaired quickly to prevent infection. Using artificial skin substitutes for repair avoids the difficulties of grafts, but an ideal material for a scaffold that's strong and allows regeneration of skin tissue has yet to be found.

Hybrid Scaffold More Than Skin Deep

Some current scaffolds are made of collagen or gelatin, which are ideal for promoting tissue regeneration but are not mechanically strong. Others are made of biodegradable synthetic materials such as Poly(L-lactic acid) (PLLA); these are stronger, but not so good for tissue growth. Guopong Chen and colleagues at the National Institute for Materials Science, Japan, have created a hybrid scaffold that has all the necessary properties.

The team had previously formed 'funnel-like' scaffolds with pores that are interconnected under the surface, allowing cells to grow into the scaffold. Now, they have formed these funnel-like collagen or gelatin 'sponges' on a PLLA mesh to create hybrid scaffolds.

Connective tissue cells grew on the hybrid scaffold and penetrated into the pores, with more cells growing in the hybrid scaffold than in a scaffold made only of collagen. Implantation of the hybrid scaffolds into the backs of mice also promoted healing: four weeks after implantation, skin defects were completely closed. Regenerated skin was healthier with the hybrid scaffold than with a collagen-only scaffold, and there was also less deformation of the skin due to the extra strength provided by the PLLA mesh.

The ability of the hybrid scaffold to promote regeneration of skin in live animals while maintaining mechanical strength makes it a promising material for future skin tissue engineering.

Reference
Hongxu Lu, Hwan Hee Oh, Naoki Kawazoe, Kozo Yamagishi and Guoping Chen (2012) PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and Technology of Advanced Materials Vol. 13 (2012) p. 064210
doi:10.1088/1468-6996/13/6/064210
http://iopscience.iop.org/1468-6996/13/6/064210

Publisher
Mikiko Tanifuji
National Institute for Materials Science
Tsukuba, Japan
Tel. +81-(0)29-859-2494
Email: stam_office@nims.go.jp

Press release distributed by ResearchSEA for National Institute for Materials Science.

Topic: Research and development
Source: National Institute for Materials Science (NIMS)

Sectors: Science & Research
https://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 

National Institute for Materials Science (NIMS) Related News
2020年2月17日 15時33分 JST
Using Bone's Natural Electricity to Promote Regeneration
May 25, 2015 13:00 HKT/SGT
Nano-capsules Designed for Diagnosing Malignant Tumours
Feb 19, 2015 10:30 HKT/SGT
Controlling Car Pollution at the Quantum Level
Jan 30, 2015 13:00 HKT/SGT
Understanding the reinforcing ability of carbon nanotubes
Jan 23, 2015 15:00 HKT/SGT
Improvements in Transistors Will Make Flexible Plastic Computers a Reality
More news >>
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575