English | 简体中文 | 繁體中文 | 한국어 | 日本語
Monday, 22 April 2013, 17:30 HKT/SGT
Share:
    

Source: A*STAR
Understanding Abnormal Proteins in Degenerative Diseases
New IBN Peptides May Help Researchers Combat Alzheimer's, Diabetes and Cancer

SINGAPORE, Apr 22, 2013 - (ACN Newswire) - Amyloids, or fibrous aggregates of abnormally folded proteins, are a common feature in degenerative diseases such as Alzheimer's, diabetes and cancer. Amyloids occur naturally in the body, but despite decades of research, their mechanism of formation remains unknown, hampering drug development efforts. Now, a new class of ultrasmall peptides developed by the Institute of Bioengineering and Nanotechnology (IBN) offers scientists a platform for understanding this phenomenon, providing them with the insights required to design more effective treatments for these diseases.

Understanding Abnormal Proteins in Degenerative Diseases

IBN Executive Director Professor Jackie Y. Ying said, "Our researchers have been focusing on creating biomimetic materials for nanomedicine and cell and tissue engineering applications. The novel ultrasmall peptides developed by IBN are not only highly effective as synthetic cell culture substrates, but also as a model for studying the mystery of amyloid formation. Such fundamental understanding could contribute towards advancing medical treatment of amyloid-related disorders."

First discovered in 2011 by IBN Team Leader and Principal Research Scientist Dr Charlotte Hauser, the peptides were formed from only 3-7 amino acids, making them the smallest ever reported class of self-assembling aliphatic compounds. Peptides perform a wide range of functions in the body, and are distinguished from proteins based on size. Building on this earlier research, IBN researchers have found a striking similarity between the structure of their synthetic peptides and the protein structure of naturally occurring amyloids in the latest study published in Proceedings of the National Academy of Sciences[1].

Dr Hauser elaborated, "This is the first proof-of-concept that our peptides self-assemble in the same way as naturally occurring amyloid sequences. Knowing that the process of amyloid formation is common across various chronic degenerative diseases, our goal is to identify the specific trigger so that we can design the appropriate drugs to inhibit and control the aggregate formation."

The IBN team collaborated with researchers from the Institute of High Performance Computing and the European Synchrotron Radiation Facility to validate their peptides with the core protein sequences of three diseases: Alzheimer's, diabetes and thyroid cancer.

The results revealed that the mechanism behind the self-assembly of amyloids from smaller intermediate structures into larger amyloid structures was similar to how the IBN peptides were formed. In addition, this study supports the growing evidence that early intermediates are more toxic than the final amyloid fibers, and may even be the driving force behind amyloid formation.

Patent applications have been filed on this research, and the next step of this project is pre-clinical evaluation of ultrasmall peptide therapeutics. IBN will also investigate other amyloid disorders such as corneal dystrophy, which can result in blindness.

References:

1. A. Lakshmanan, D. W. Cheong, A. Accardo, E. Di Fabrizio, C. Riekel and C. A. E. Hauser, "Aliphatic Peptides Show Similar Self-Assembly to Amyloid Core Sequences, Challenging the Importance of Aromatic Interactions in Amyloidosis," Proceedings of the National Academy of Sciences, 110 (2013) 519-524.

2. C. A. E. Hauser, R. Deng, A. Mishra, Y. Loo, U. Khoe, F. Zhuang, D. W. Cheong, A. Accardo, M. B. Sullivan, C. Riekel, J. Y. Ying and U. A. Hauser, "Natural Tri- to Hexapeptides Self-Assemble in Water to Amyloid Beta Type Fibre Aggregates by Unexpected Alpha Helical Intermediate Structures," Proceedings of the National Academy of Sciences, 108 (2011) 1361-1366.

Please see the full press release, with supporting images, at http://bit.ly/ZgegXk .

About the Institute of Bioengineering and Nanotechnology

The Institute of Bioengineering and Nanotechnology (IBN) was established in 2003 and is spearheaded by its Executive Director, Professor Jackie Yi-Ru Ying.

Professor Ying was a Professor of Chemical Engineering at the Massachusetts Institute of Technology (1992 - 2005). She was recognized as one of "One Hundred Engineers of the Modern Era" by the American Institute of Chemical Engineers in 2008 for her groundbreaking work on nanostructured systems, nanoporous materials and host matrices for quantum dots and wires.

Under her direction, IBN conducts research at the cutting-edge of bioengineering and nanotechnology. Its programs are geared towards linking multiple disciplines across engineering, science and medicine to produce research breakthroughs that will improve healthcare and our quality of life.

IBN's research activities are focused in the following areas:

- Nanomedicine, where functionalized polymers, hydrogels and biologics are developed as therapeutics and carriers for the controlled release and targeted delivery of therapeutics to diseased cells and organs.
- Cell and Tissue Engineering, where biomimicking materials, stem cell technology, microfluidic systems and bioimaging tools are combined to develop novel approaches to regenerative medicine and artificial organs.
- Biodevices and Diagnostics, which involve nanotechnology and microfabricated platforms for high-throughput biomarker and drug screening, automated biologics synthesis, and rapid disease diagnosis.
- Green Chemistry and Energy, which encompass the green synthesis of chemicals and pharmaceuticals, catalytic conversion of biomass, utilization of carbon dioxide, and new nanocomposite materials for energy applications.

IBN's innovative research is aimed at creating new knowledge and intellectual properties in the emerging fields of bioengineering and nanotechnology to attract top-notch researchers and business partners to Singapore. Since 2003, IBN researchers have published over 860 papers in leading journals.

IBN also plays an active role in technology transfer and spinning off companies, linking the research institute and industrial partners to other global institutions. The Institute has a portfolio of over 620 active patents/patent applications, and welcomes industrial and clinical partners to collaborate on and co-develop its technologies. IBN has successfully commercialized 46 patents/patent applications, and has established 6 spin-off companies.

IBN's current staff and students strength stands at over 150 scientists, engineers and medical doctors. With its multinational and multidisciplinary research staff, the institute is geared towards generating new biomaterials, devices, systems and processes to boost Singapore's economy in the medical technology, pharmaceuticals, chemicals, consumer products and clean technology sectors.

IBN is also committed to nurturing young talents. Besides the training of PhD students, IBN has a Youth Research Program (YRP) for students and teachers from secondary schools, junior colleges, polytechnics, and universities. Since its inception in October 2003, YRP has reached out to more than 61,900 students and teachers from 289 local and overseas schools and institutions. Over 1,690 students and teachers have completed research attachments at IBN for a minimum period of four weeks. For more information, visit www.ibn.a-star.edu.sg .

Contact:

Elena Tan
Phone: +65 6824 7032
Email: elenatan@ibn.a-star.edu.sg

Nidyah Sani
Phone: +65 6824 7005
Email: nidyah@ibn.a-star.edu.sg


Topic: Research and development
Source: A*STAR

Sectors: Science & Research, BioTech
https://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 

A*STAR Related News
Dec 6, 2022 14:00 HKT/SGT
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
Sept 30, 2021 16:00 HKT/SGT
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes
July 31, 2020 08:00 HKT/SGT
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials
More news >>
Copyright © 2025 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575