English | 简体中文 | 繁體中文 | 한국어 | 日本語
Tuesday, 3 March 2020, 11:45 JST
Share:
    

Source: Fujitsu Ltd
Fujitsu Innovates Magnetic Tape Storage High-Speed Access Technology, Making Mass Data Archiving a Reality
Delivers 4.1 times higher read performance than previous models, offering greater versatility and range of uses for magnetic tape storage technology

KAWASAKI, Japan, Mar 3, 2020 - (JCN Newswire) - Fujitsu Laboratories Ltd. today announced the development of a breakthrough high-speed access technology for magnetic tape storage, which is attracting renewed interest as a low-cost, large-capacity storage solution alternative to hard disks (HDD).

Fig.1 Configuration image of the developed system

Fig.2 Rewrite image on write error

Fig.3 Image of access order control with physical location

Fig.4 Multiple file aggregation image

Traditionally, magnetic tape storage has been used mainly for backup purposes, but because of its high capacity and low cost, as well as the acceleration of transfer speeds and the spread of the Linear Tape File System (LTFS) in recent years, it is expected to find increasing use for archival purposes.

Fujitsu has successfully expanded the functionality of LTFS by innovating a unique file system that virtually integrates multiple tape cartridges. By improving random read performance from tape through data management and access order control in accordance with tape characteristics, the new technology successfully achieves speeds 4.1 times faster than conventional methods.

This technology will accelerate the adoption of magnetic tape storage technology as an archival medium in anticipation of the exponential growth of data in the future. By promoting this technology, Fujitsu will help companies to achieve their digital transformation goals through data storage solutions that offer superior performance at a reasonable cost. Fujitsu Laboratories is currently conducting a verification trial assuming the application of this technology to its operations, with plans to commercialize the technology by the end of fiscal year 2022.

Details of this technology will be presented at the 12th Forum on Data Engineering and Information Management (DEIM 2020), which will be held from March 2nd to March 4th.

About the Newly Developed Technology

While magnetic tape storage is ideally suited to reading from and writing to sequential areas of tape, its ability to randomly access discontinuous locations remains limited. The technology's relative inability to deliver random-access reading presents a roadblock to broadening its use into high volume data archiving applications.

In general, to manage a large amount of data with magnetic tape storage, data is held under a different directory for each tape cartridge on LTFS, which uses multiple tape cartridges and can access data on a file-by-file basis in the same way as data on HDDs, USB memory, etc.

Fujitsu developed a new file system on LTFS that virtually integrates multiple tape cartridges. This virtually integrated file system consolidates multiple tape cartridges into one, allowing users to access the data they need without thinking about each individual tape cartridge. In addition, the following newly developed technologies have been applied to this file system to achieve high-speed magnetic tape access performance.

1. Access Order Control with Physical Location

On magnetic tape, data is divided along its length in units called wraps, and each wrap wraps around and is written in a write-once fashion. Therefore, the distance between the logical address and the physical address is very different. The virtual consolidated file system accepts multiple random read requests and processes them starting with the closest physical location on the tape, not the logical address.

When writing to magnetic tape, write and error checking are performed in parallel, and when an error occurs, only the part of the error that occurred after the end of writing is automatically rewritten. Therefore, it is difficult to predict the physical location where a rewrite has finished from the change in file size. The physical location of each file is estimated by periodically measuring the head position after writing the file.

Also, when accessing the magnetic tape, it takes time to align the head to the start position. Therefore, two read requests that are close to each other on the same wrap will not read two files at once, but will read all the files in between and discard unnecessary files.

2. Multiple File Aggregation Function

LTFS maintains an index of each file on magnetic tape, and the impact increases exponentially as the number of files increases. When using tapes for archival purposes, users write and access files of various sizes, but writing large numbers of small files can significantly degrade read performance.

Therefore, Fujitsu has developed a mechanism to keep small files smaller than a specified file size together as large files on LTFS so that users can access them without worrying about the location of the files. In addition, by managing the metadata of user files in the virtual integrated file system, it is possible to quickly display a list in a way other than data reading, add extended attributes, or delete files without accessing the magnetic tape.

Outcomes

Fujitsu has constructed a hierarchical storage system for HDDs and magnetic tapes by using Ceph(1), an open-source distributed storage software, and evaluated the access performance of the system. As a result, the time required to read 100 files randomly from a total of 50,000 individual 100 MB files stored on magnetic tape was 5,400 seconds with the conventional method. By using the new technology, it was possible to confirm a read in 1,300 seconds, which is 4.1 times faster than the conventional method. In addition, while the conventional method required 2.5 seconds to move 256 individual 1 MB files on the HDD onto magnetic tape, the new technology enabled us to confirm data movement in 1.3 seconds, which is 1.9 times faster than the conventional method.

This technology enables high-speed tape access performance, such as random reads and writes of various sizes occurring in archive applications, and is expected to provide a cost-effective data archiving infrastructure for long-term archiving of large volumes of data.

(1) Ceph Open source distributed storage software developed at the University of California and managed by the Ceph community since 2004.

About Fujitsu Laboratories

Founded in 1968 as a wholly-owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.

Fujitsu Laboratories Ltd.
Platform Innovation Project
E-mail: data-archive@ml.labs.fujitsu.com

Topic: Press release summary
Source: Fujitsu Ltd

Sectors: Electronics
https://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.

 
Fujitsu Ltd Links

http://www.fujitsu.com

https://plus.google.com/+Fujitsu

https://www.facebook.com/FujitsuJapan

https://twitter.com/Fujitsu_Global

https://www.youtube.com/user/FujitsuOfficial

https://www.linkedin.com/company/fujitsu/

Fujitsu Ltd Related News
Thursday, 5 September 2024, 10:40 JST
Fujitsu and MoBagel revolutionize business processes through accelerated AI prediction
Friday, 30 August 2024, 18:15 JST
Fujitsu establishes Open All-Photonics Network Lab in Europe to promote global expansion of innovative network infrastructure
Wednesday, 28 August 2024, 11:55 JST
Fujitsu and Osaka University accelerate progress toward practical quantum computing by significantly increasing computing scale through error impact reduction in quantum computing architecture
Monday, 26 August 2024, 12:19 JST
Fujitsu tackles 'drug loss' in Japan through ecosystem to accelerate digitalization of clinical trials
2024年8月2日 18時00分 JST
富士通、「富士通SX調査レポート2024 - グローバルCxOのAIとサステナビリティの取り組みの最新動向」を公開
More news >>
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Cookies Policy | Privacy Policy | Disclaimer | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575